Support Line

A publication of

Dietitians in Nutrition Support
A dietetic practice group of the
Academy of Nutrition and Dietetics

Academy of Nutrition and Dietetics:
http://www.eatright.org
DNS: http://www.dnsdpg.org

Editor:
Kate Willcuts, DCN, RD, CNSC
1059 Old Fox Trail Lane
Crozet, VA 22932
kwilcutts97@gmail.com

Managing Editor:
Deborah K. Kuhiman
921 N. Western Avenue
Park Ridge, IL 60068
847/692-3407
dkedits@speakeasy.net

Associate Editors:
Kelly Kinnare, MS, RD, LDN, CNSC
kelly.kinnare@optioncare.com
Britta Brown, MS, RD, CNSC
Britta.brown@hcmed.org

Associate Editor, Continuing Education:
Debbie Carpenter, MS, RD
debcrd@breglobal.net

Contributing Editor, Inquire Here:
Kelly Roehl, MS, RD, LDN, CNSC
kelly_roehl@rush.edu

Associate Editor, Writer’s Mentoring:
Rebecca Brody, PhD, RD, LD, CNSC
brodyra@shpr.rutgers.edu

Membership/Subscriptions:
Alyssa Hess, RD, LDN, CNSC
Lysh331@yahoo.com

Copyright © 2017 Dietitians in Nutrition Support.

All material appearing in SUPPORT LINE is covered by
copyright and may be photocopied or otherwise reproduced
for noncommercial scientific or educational purposes only,
provided the source is acknowledged. Written consent from
the managing editor is required for any other purpose.

Viewpoints and statements in these materials do not
necessarily reflect the policies and/or official positions of the
Academy of Nutrition and Dietetics or DNS.

SUPPORT LINE (ISSN 1067-3768) is published bi-monthly.
$70 for individual non-member subscriptions, $140
for institutions per year (plus postage surcharges for
international subscriptions). Newsletter subscriptions
are available to interested parties who are ineligible for
Academy membership. Published by Dietitians in Nutrition
Support, a dietetic practice group of the Academy of
Nutrition and Dietetics, 120 S. Riverside Plaza, Suite 2000,
Chicago, IL 60606. Send requests for subscriptions to
Jenna Wiltzer Karmin, MS, RD, LD. For address changes:
Please submit name and address changes directly to the
Membership Team of the Academy of Nutrition and Dietetics
using the address change card in the Journal of the Academy
of Nutrition and Dietetics. SUPPORT LINE is indexed in the
Cumulative Index to Nursing and Allied Health Literature.

A Step-By-Step Guide to Implementing a Malnutrition Coding Program for Adult Inpatients

Wendy Phillips, MS, RD, CNSC, CLE, FAND
Cassie Whiddon, MS, RDN
Denice Wehausen, MPH, RD

Abstract
Proper assessment and documentation of a
malnutrition diagnosis can have a significant
impact on Medicare reimbursement and the
case mix index for a hospital. Multidisciplinary
involvement and support is key to
implementing a successful program. This
article provides guidance for implementing
a malnutrition coding program, including
the development of an effective nutrition
screening and prioritization plan, using
the key steps of the Nutrition Care Process,
and communicating the malnutrition diagnosis
to the appropriate health care team
members. It also provides guidance on how
to determine the actual payment amount
and the change in case mix index when the
malnutrition diagnosis is the primary driver
for the severity level of the Diagnosis
Related Group assignment.

Introduction
“I’ve been reading about the impact
malnutrition coding can have on hospital
finances and the case mix index. What do we
need to do here at our hospital to get us to
that point?” As the clinical nutrition manager,
I was thrilled to have our Chief Medical
Officer (CMO) approach me after Medical
Executive Committee to discuss this topic.

We had already taken several steps toward
implementation of this initiative, and having
the CMO’s support to coordinate efforts with
other health care team members and
hospital departments would be invaluable.
I explained the steps for an individual patient
to be diagnosed, treated, and coded for
malnutrition (Fig 1) to give the CMO a better
understanding of the patient care workflow
involved and the interdisciplinary nature of
the process. I also shared the steps involved
in implementing such a program, the
progress we had made so far, and specific
actions for which we needed support.

Although not all registered dietitian
nutritionists (RDNs) may be fortunate
enough to be approached by the CMO, all
clinicians have a responsibility to work
toward implementing a comprehensive
malnutrition program in their organizations.
Understanding each step involved in the
process is necessary to achieve a complete
program. Having an overall vision increases
the opportunity for the clinical nutrition
team to show their value in a health care
landscape driven by patient satisfaction,
quality outcomes, and financial stability.
Many health care facilities and systems
have portions of the programs in place but
may be unsure of how to implement them
completely. This guide explains the process
surrounding malnutrition coding and
suggests a path for successful creation
of an effective and inclusive malnutrition
documentation and tracking program.

Patient Workflow Using the Nutrition Care Process

Nutrition Screening and Prioritization
A prioritization system can determine which
patients are seen by the RDN within a
specific timeframe. Not all hospitalized
patients can receive a nutrition assessment
and care plan from the RDN due to staffing
levels. The first step in the process is usually
completion of a nutrition screening tool by
the registered nurse or designee during the
admission process. The tool contains a
predetermined list of questions to identify
nutrition risk. A validated nutrition
screening tool that is appropriate for the
patient population served at the specific
hospital is recommended. RDNs can consult
the Evidence Analysis Library from the
Academy of Nutrition and Dietetics for an
extensive review of available validated tools
to choose the most appropriate screen (1).

Some hospitals determine the list of patients...
for the RDN to see each day based solely on
the presence of a nutrition screening referral
or physician consultation; others have an
additional process to determine which
patients would benefit from an RDN
intervention, even if they do not trigger
positively on the nutrition screen. Examples
of additional factors that may trigger an RDN
assessment include the presence of pressure
injuries (pre-existing or hospital-acquired);
oncology diagnoses; and gastrointestinal
diseases causing obstruction, shortened
length of bowel, or malabsorption of
macronutrients, micronutrients, and/or
fluids. Because of variations in this process
among institutions, all stakeholders involved
in developing a malnutrition coding
program must understand the actual
workflow that determines which patients are
seen by the RDN, how the nutrition diagnosis
is determined, and the steps necessary to
ensure inclusion of the malnutrition
diagnosis in the master charge (Fig. 1).

Nutrition Assessment and Diagnosis

Patients identified at nutrition risk are
referred to the RDN for more in-depth
screening and potential nutrition assessment.
The development of a nutrition diagnosis, of
which malnutrition is one example, starts with
a thorough nutrition assessment, as outlined
in the Nutrition Care Process (2). Each
component of a thorough nutrition
assessment should be considered, including
a nutrition-focused physical exam (NFPE).

Many health care providers automatically
consider a patient’s body mass index (BMI),
oral intake, and weight changes when
considering the degree of malnutrition.
Physical signs and symptoms are equally
important to identify, especially for patients
with normal or overweight/obese BMIs, who
may not be easily identified as malnourished.
Historically, approaches to evaluation,
including assessment of appetite, weight
loss, and laboratory tests, varied widely and
were not always evidenced-based. Some of
these approaches resulted in inconsistent
measurement and confused communication
among clinicians, with potential
misdiagnoses (3). Many laboratory indicators,
such as acute-phase protein values (albumin,
prealbumin), are affected by the
inflammatory response and do not
specifically reflect nutrition status (4,5).
Consequently, estimates of malnutrition
prevalence vary widely from 15% to 60% of
the hospitalized population (3).

To address the need for a more consistent and
reliable diagnostic approach, the Academy
and the American Society for Parenteral and
Enteral Nutrition (A.S.P.E.N.) produced a
consensus statement in 2012 that detailed a
set of criteria important in assessing and
classifying the degree of malnutrition (3).
In the statement, malnutrition is defined
in the setting of three basic causes: chronic
versus acute injury or illness and social/
environmental. Six malnutrition clinical
characteristics are outlined, and four of these
six are physical findings that the RDN can
investigate using the NFPE.

Clinical RDNs must develop competency in
the assessment and interpretation of all six
clinical characteristics, with the ultimate
goal of determining nutrition status with
appropriate interventions. The challenges in
implementing the NFPE include lack of RDN
knowledge about the clinical characteristics
and apprehension about conducting the
physical exam due to lack of experience. An
informal poll of 27 RDNs in clinical practice
showed that 45% had never used physical
assessment in their practices (author’s
survey). The most cited reason was
insufficient training and practice. A
multistep approach to training can address
these shortcomings. The first step is to
provide background information regarding
the need for a consistent, reliable diagnostic
approach, followed by an overview of
the Academy/A.S.P.E.N. etiology-based
approach to the malnutrition diagnosis (3).
Review of the consensus article itself can
provide this initial information and the
foundation upon which subsequent

Figure 1. Interdisciplinary workflow to identify malnourished patients and include the malnutrition diagnosis in the master charge.

<table>
<thead>
<tr>
<th>Nursing Staff</th>
<th>Foodservice Staff</th>
<th>Registered Dietitian (RDN)</th>
<th>Physicians</th>
<th>Clinical Documentation Specialists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completes initial nutrition screen using validated screening criteria.</td>
<td>Enters referral to RDN to complete nutrition assessment if needed.</td>
<td>Completes nutrition assessment on all referred patients and those identified at nutrition risk through other methods.</td>
<td>Uses the approved criteria to determine presence and degree of malnutrition.</td>
<td>Documents the nutrition diagnosis of malnutrition, if present. Notifies physician.</td>
</tr>
<tr>
<td>Enters nutrition screening referral to notify RDN when patient triggers positively on the screen.</td>
<td>Helps implement the nutrition care plan as directed by the RDN and/or the physician.</td>
<td>Develops and implements the nutrition care plan and communicates it to the physician.</td>
<td>Determines if he/she agrees with the malnutrition diagnosis. If yes, documents the malnutrition in the progress notes.</td>
<td>Reviews chart and enters code for malnutrition diagnosis in the coding software. Sends query if needed to physician.</td>
</tr>
<tr>
<td>Helps implement the nutrition care plan as directed by the RDN and/or the physician.</td>
<td>Reassesses the patient at defined intervals to determine response to care. Determines nutrition discharge plan as needed.</td>
<td>Writes orders as needed to implement the nutrition care plan.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued on next page)
training can be built. Next, the clinician should seek educational resources that target implementing the malnutrition diagnosis approach into daily clinical practice, including conducting the physical exam, documenting the findings, and recording the corresponding malnutrition when present. Developing a strong conceptual understanding of the malnutrition diagnosis approach gives the RDN a foundation for initiating hands-on physical assessment training.

A workshop with a skilled trainer is an effective tool for gaining experience in conducting the physical exam. Beginning with the head and working toward the lower body, the RDN conducts the physical assessment of various body areas. With the guidance of the instructor, RDNs practice palpation on partners and consider the necessary findings to identify nutrition status using the malnutrition clinical characteristics. To simulate the tactile experience of the NFPE, items with specific purposes are included in the training. A leather belt can mimic the feeling of a well-nourished temporal muscle, while a half-filled water balloon demonstrates the feeling of severe wasting of the same area. A taut water balloon simulates the normal firmness of a deltoid, and a bag of flour can mimic the shape of the deltoid from posterior to medial head. A ball of string can simulate the feel of the muscles at the base of the neck of a severely wasted patient.

The final training step involves practicing the approach at the bedside, preferably with one RDN conducting the NFPE and interpreting the findings, which are validated by an observing RDN. Subsequent discussion as well as review and interpretation of the findings are completed by RDNs in partnership. With continued consistent practice, the clinician should gain greater understanding of the differences in individuals, comprehend the implications of findings, and develop competency in conducting the physical exam as part of the nutrition assessment.

The nutrition assessment provides the information required to document a nutrition diagnosis, using standardized language in the problem-etiology-signs/symptoms (PES) format (2). The Nutrition Focused Physical Exam Pocket Guide (6) provides sample PES statements that document the degree of malnutrition, the context in which that malnutrition occurs (acute, chronic, or social/environment circumstances), and the etiology and signs/symptoms.

Nutrition Intervention, Monitoring, and Evaluation

Once the nutrition assessment has been completed and the diagnosis identified, the Nutrition Care Process steps include developing nutrition interventions targeted to address the signs and symptoms and/or etiology of the nutrition diagnosis and resolve the diagnosis if possible (2). A monitoring and evaluation plan must be developed to monitor the patient’s response to care and the achievement of care goals. Several additional steps, discussed in this article, need to be completed to develop a robust malnutrition program at a hospital. These inform the work done with individual patients and measure the impact of the malnutrition assessment, intervention, and documentation. Some steps are interrelated and can be completed simultaneously.

Table 1. International Classification of Diseases, 10th edition (ICD-10) Codes for Malnutrition

<table>
<thead>
<tr>
<th>ICD-10 Code</th>
<th>ICD-10 Title</th>
<th>Criteria/Description</th>
<th>MCC/CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>E40</td>
<td>Kwashiorkor*</td>
<td>Nutritional edema with dyspigmentation of skin and hair.</td>
<td>MCC</td>
</tr>
<tr>
<td>E42</td>
<td>Marasmic kwashiorkor *</td>
<td>Nutritional atrophy; severe malnutrition otherwise stated; severe energy deficiency.</td>
<td>MCC</td>
</tr>
<tr>
<td>E41</td>
<td>Nutritional marasmus *</td>
<td>Nutritional edema without mention of dyspigmentation of skin and hair.</td>
<td>MCC</td>
</tr>
<tr>
<td>E43</td>
<td>Unspecified severe protein-calorie malnutrition</td>
<td>A disorder caused by a lack of proper nutrition or an inability to absorb nutrients from food. An imbalanced nutritional status resulting from insufficient intake of nutrients to meet normal physiologic requirement. Inadequate nutrition resulting from poor diet, malabsorption, or abnormal nutrient distribution. The lack of sufficient energy or protein to meet the body’s metabolic demands, as a result of either an inadequate dietary intake of protein, intake of poor-quality dietary protein, increased demands due to disease, or increased nutrient losses.</td>
<td>CC</td>
</tr>
<tr>
<td>E44</td>
<td>Moderate protein-calorie malnutrition</td>
<td>No definition given.</td>
<td>CC</td>
</tr>
<tr>
<td>E44.1</td>
<td>Mild protein-calorie malnutrition</td>
<td>No definition given.</td>
<td>CC</td>
</tr>
<tr>
<td>E45</td>
<td>Retarded development following protein-calorie malnutrition</td>
<td></td>
<td>CC</td>
</tr>
<tr>
<td>E46</td>
<td>Unspecified protein-calorie malnutrition</td>
<td>A disorder caused by a lack of proper nutrition or an inability to absorb nutrients from food. An imbalanced nutritional status resulting from insufficient intake of nutrients to meet normal physiologic requirement. Inadequate nutrition resulting from poor diet, malabsorption, or abnormal nutrient distribution. The lack of sufficient energy or protein to meet the body’s metabolic demands, as a result of either an inadequate dietary intake of protein, intake of poor-quality dietary protein, increased demands due to disease, or increased nutrient losses.</td>
<td>CC</td>
</tr>
<tr>
<td>E64</td>
<td>Sequelae of protein-calorie malnutrition</td>
<td></td>
<td>CC</td>
</tr>
</tbody>
</table>

*Should rarely be used in the United States; if they are used, they require extensive documentation to justify their use. CC=complication or comorbidity, MCC=major complication or comorbidity.
Defining Malnutrition

Malnutrition can be defined simply as an imbalance of nutrients to promote optimal health, but there is no universally accepted set of criteria for determining the presence or degree of malnutrition (3). The International Classification of Diseases, 10th edition (ICD-10) includes basic definitions (Table 1) but does not provide guidance on assessment factors or signs/symptoms that a patient might exhibit (7). Recognizing this limitation, the Academy and A.S.P.E.N. developed the consensus statement for patient-specific definitions and criteria to be evaluated to determine the etiology and degree of malnutrition (3).

Because these criteria have not been officially accepted by the Centers for Medicare & Medicaid Services (CMS) and have not been validated, each hospital may use the consensus statement criteria or choose alternate criteria. RDNs should collaborate with physicians from multiple care teams, such as surgery, medicine, neurology, gastroenterology, oncology, and endocrinology, to determine the criteria that will be used to diagnose malnutrition by health care team members in that hospital. Coding documentation specialists (CDSs) read through medical charts to determine all appropriate diagnoses to add to the patient’s master charge list. Therefore, it is important to engage this department in determining the malnutrition diagnosis criteria that will be used in the hospital to limit the queries they send to physicians using unapproved alternate criteria. We recommend use of the consensus statement criteria because several studies have demonstrated negative outcomes in patients identified as malnourished using the consensus malnutrition clinical characteristics, and work is underway to validate these criteria (8–11). Consistent use can help with this effort. In most institutions, the policy summarizing the criteria requires approval by the Pharmacy and Therapeutics Committee and Medical Executive Committee or facility equivalent committees.

Although clinical judgment still can play a part in assigning the malnutrition diagnosis, the approved policy should be used as a guide to ensure consistency in the diagnosis. As an example, consider two patients admitted to the hospital at the same time. Patient A has had poor oral intake for 2 weeks due to mouth sores and poor appetite and has lost 40 lb (16% of usual body weight). The RDN documents “Severe protein-calorie malnutrition in the context of chronic disease related to mouth sores affecting ability to eat, as evidenced by patient’s report of poor intake for 2 weeks and 16% weight loss.” Patient B has a similar pattern of inadequate oral intake and unintentional weight loss but receives a diagnosis of mild malnutrition by a different (or the same) RDN. Such inconsistencies can be confusing to the physicians who are asked whether they agree with the diagnosis and can raise suspicion among auditors assigned by CMS to determine accuracy of Medicare billing.

Communicating Approved Malnutrition Diagnosis Criteria

Health care providers must be educated about the approved criteria to diagnose malnutrition, especially because they may vary slightly from one hospital to another. Education can ensure that all clinicians involved in risk identification, assessment, diagnosis, and intervention for malnutrition provide consistent, evidence-based nutrition care. Physicians, nurses, RDNs, pharmacists, speech-language pathologists, and CDSs are some of the clinicians who need to receive education.

Because the criteria list is often long and contains multiple assessment factors, physicians may have difficulty remembering the approved criteria when asked to corroborate the RDN’s malnutrition diagnosis, whether directly contacted by the RDN or queried by the CDSs. Certain strategies can facilitate this process (Table 2). Figure 2 shares an example of documentation best practices from the coding department at a Midwest hospital.

Optimizing the Electronic Medical Record to Communicate Nutrition Assessment Data and Malnutrition Diagnosis

RDNs should work with nursing and information technology staff to optimize nursing electronic medical record (EMR) workflow in documenting items that should be assessed for malnutrition, such as meal and oral nutrition supplement intake, enteral and parenteral nutrition delivery, and anthropometric measurements. Nursing staff require periodic education on how, where, and why to document relevant information to provide RDNs with adequate information to assess the patient accurately and assign the appropriate nutrition diagnosis.

(Continued on next page)
The malnutrition diagnosis can only be assigned an ICD-10 code and added to the overall charge master if the physician or other primary care provider documents it as a medical diagnosis. The CMO and other physician leaders can help determine preferred communication pathways when RDNs have identified a patient with malnutrition, such as a phone call, discussion on rounds, or electronic notification through the EMR. A practice that has been very successful at multiple facilities is the Nutrition Summary, in which the RDN identifies a patient as malnourished and creates a concise note detailing criteria observed. The Summary is sent electronically through the EMR to the physician responsible for care of the patient, requesting agreement and signature. If the physician signs, indicating agreement with the RDN assessment, the CDS can enter the diagnosis into the patient record. The response rate with this process is believed to be higher than that associated with more traditional communication methods, such as verbal communication on medical rounds or leaving sticky notes in the physician’s progress note or order section.

Building a close working relationship with the CDS team can facilitate malnutrition coding of appropriate patients. CDSs need to understand malnutrition clinical characteristics and feel comfortable contacting RDNs when clarification is needed to improve the chances of diagnosing the correct, billable malnutrition type and severity. For example, a physician may diagnose a patient with “malnutrition,” which is not a codable form of the diagnosis. The CDS who has a good relationship with the RDN can raise the issue, and the RDN can work with the physician and CDS to provide the appropriate diagnosis for the patient. One suggestion is to have an identifiable field in a flowsheet where the RDN or physician can choose the correct malnutrition diagnosis from a discrete field. The coders can run a periodic report from that list, then check to see if physicians have written a medical diagnosis of malnutrition, querying them for agreement with the RDN’s nutrition diagnosis if needed.

Obtaining the data needed to determine the impact on payment and CMI can be challenging for many reasons and is often the part of the program that needs the most support from senior leaders such as the CMO. RDNs may not know the correct terminology to request the needed data, and once obtained, RDNs may not know how to interpret the data to determine if they are indeed the data needed. Data that should be obtained from the finance department for each patient are described in Table 4. Such data can be compared with examples of data in Table 3 that can be

Table 3. Example Data Collected by the Registered Dietitian Nutritionist (RDN) for Patients Assigned a Malnutrition Diagnosis

<table>
<thead>
<tr>
<th>Patient identifier</th>
<th>Date seen by RDN</th>
<th>Not malnourished</th>
<th>Mild malnutrition (E44.1)</th>
<th>Moderate malnutrition (E43)</th>
<th>Severe malnutrition (E44)</th>
<th>Date communicated to physician</th>
</tr>
</thead>
</table>
complications or comorbidities (CCs) or MCCs. The hospital receives a higher payment for MS-DRGs associated with a CC, and an even higher payment for MS-DRGs associated with MCCs. Table 1 indicates which malnutrition diagnoses are considered MCCs or CCs. This same system is used to determine the CMI, which is a description of the level of severity of patients being cared for at that hospital. Of note, only one CC or MCC is required to increase the severity level of the MS-DRG, so the malnutrition diagnosis is not always the one that makes a difference on the payment or the CMI. However, it should always be coded when appropriate.

Calculating the Impact of Malnutrition Coding on Hospital Payment

Each MS-DRG has a relative weight (RW) assigned to it by CMS; RW tables are updated each year and can be found at www.cms.gov (13). The RW reflects the severity of illness associated with the given diagnosis.

Medicare determines payment for a patient’s hospital stay by multiplying the RW of the MS-DRG assigned at discharge by the base rate for that hospital for that year. Table 5 provides sample calculations for a hospital whose base rate is $8,800.

Calculating the Impact of Malnutrition Coding on CMI

The CMI is the average of all of the RWs assigned to patients discharged from a hospital in a given time period (14), calculated by summing the RWs for all Medicare discharges and dividing that sum by the number of discharges. A higher CMI indicates that the patient population has a higher acuity (is sicker) compared with other patient populations. Similarly, when comparing two hospitals, the hospital with the higher CMI serves more complex patients. When the malnutrition diagnosis affects the severity level of the DRG assigned and, therefore, increases the RW for an individual patient, it has an impact on the overall CMI. Over time, such impacts can be a major financial benefit to the hospital.

Many hospitals adjust their statistics based on the CMI. For example, the total mortality rate is reported using both a raw score and a score that has been adjusted based on CMI. The CMI is also often used to adjust the average cost per patient for a given hospital relative to the adjusted average cost for other hospitals by dividing the average cost per patient by the hospital’s calculated CMI. The adjusted average cost per patient reflects the charges reported for the types of cases treated in that year. Table 6 offers example calculations between two hypothetical hospitals. The expenses per patient at the two hospitals are close to equal when adjusted for acuity of patients served using the CMI. Figure 3 illustrates additional examples of how hospitals use CMI to adjust performance metrics.

(Continued on next page)
Table 6. Sample Calculations for Adjusting Expenses per Patient Based on the Case Mix Index (CMI)

<table>
<thead>
<tr>
<th></th>
<th>Hospital A</th>
<th>Hospital B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average cost per patient</td>
<td>$1,200</td>
<td>$1,700</td>
</tr>
<tr>
<td>CMI</td>
<td>0.9</td>
<td>1.25</td>
</tr>
<tr>
<td>Adjusted cost per patient</td>
<td>$1,200 ÷ 0.9 = $1,333</td>
<td>$1,700 ÷ 1.25 = $1,360</td>
</tr>
</tbody>
</table>

Table 7 shows the CMI for patients discharged from a large academic medical center in the mid-Atlantic region in a given time period who were assigned to the four disease state DRG groups that were chosen to be studied (author’s report, previously unpublished data). The first column shows the CMI as it was actually coded, with some of the patients coded for malnutrition as a secondary diagnosis appropriately and some not coded who should have been. The second column shows what the CMI would have been if malnutrition was not coded as a secondary diagnosis on the 9 patients for which it was the primary driver for the severity level assigned to the patient. This illustrates how the CMI would have been lower if the malnutrition had not been coded. The third column keeps the CMI as it is (with the coded malnutrition) and adds in the cases that should have been coded for malnutrition. This illustrates the ideal state of all identified malnutrition being documented by the RDN and physician, the intervention occurring, and the malnutrition coded. Due to a small proportion of patients who were malnourished in each of the categories, the coding does not have a substantial impact on CMI. In this example, only four out of hundreds of possible DRG groups were examined, but the overall impact of malnutrition coding could potentially be much larger.

Table 8 uses this same data set and follows the sample calculation methods in Table 5 to determine the impact on hospital payment for the cases that were coded for malnutrition. Table 9 indicates the missed payment opportunities when malnutrition is identified by the RDN but not documented by the physician as a medical diagnosis and, therefore, not added to the master charge list with an ICD-10 code for malnutrition as a secondary diagnosis (15). It is very important to note that these totals are based on calculations using the RW tables published annually by Medicare and the hospital’s reported base rate; they may not reflect any incentives or penalties as a result of the Value-Based Purchasing program (16). Accordingly, actual payment at the end of the fiscal year to the hospital from Medicare may vary slightly.

Conclusion

Implementing a complete malnutrition program requires several steps, including approval of consensus malnutrition criteria with the hospital administrative and interdisciplinary team, proper training and practice for RDN staff, and tracking and reporting of revenue and impact on the hospital’s CMI. These pieces all are key to documenting the value and expertise of the RDN in the changing health care landscape. Undertaking the process in a step-by-step approach, finding the right stakeholders, and enlisting the assistance of the RDN team can create a powerful program.

Wendy Phillips, MS, RD, CNSC, CLE, FAND, is Division Director of Clinical Nutrition, Morrison Healthcare, St. George, UT. Cassie Whiddon, MS, RDN, is Regional Clinical Nutrition Manager, Morrison Healthcare and System CNM Beaumont Health, Dearborn, MI. Denice Wehausen, MPH, RD, is Regional Clinical Nutrition Manager, Morrison Healthcare and Clinical Nutrition Manager, LAC+USC Medical Center, Los Angeles, CA.

References

Figure 3. Example from a mid-Atlantic hospital using the case mix index (CMI) to adjust performance factors.
Table 7. Impact on the Case Mix Index (CMI) of Malnutrition Coding

<table>
<thead>
<tr>
<th>DRG Group (n)</th>
<th>CMI as Coded</th>
<th>CMI If Malnutrition Had Not Been Coded</th>
<th>CMI If Opportunities Were Not Missed (IDEAL STATE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD 190-192 (71)</td>
<td>0.943</td>
<td>0.943</td>
<td>0.949</td>
</tr>
<tr>
<td>CAP 193-195 (81)</td>
<td>1.089</td>
<td>1.068</td>
<td>1.118</td>
</tr>
<tr>
<td>Spinal Fusion 459-460 (193)</td>
<td>4.201</td>
<td>4.201</td>
<td>4.228</td>
</tr>
<tr>
<td>Chemotherapy 846-848 (111)</td>
<td>1.275</td>
<td>1.268</td>
<td>1.275</td>
</tr>
<tr>
<td>Overall (456)</td>
<td>2.284</td>
<td>2.278</td>
<td>2.290</td>
</tr>
</tbody>
</table>

CAP=community-acquired pneumonia, COPD=chronic obstructive pulmonary disease, DRG=Diagnosis Related Group

Table 8. Total Captured Increased Reimbursement from Malnutrition Documentation and Coding (15)

<table>
<thead>
<tr>
<th>DRG Group (n)</th>
<th>Cases with Malnutrition as Secondary Diagnosis (n)</th>
<th>Cases with Malnutrition as Primary Driver of Reimbursement (n)</th>
<th>Total Captured Increased Reimbursement</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD 190-192 (71)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CAP 193-195 (81)</td>
<td>11</td>
<td>7</td>
<td>$28,526.21</td>
</tr>
<tr>
<td>Spinal Fusion 459-460 (193)</td>
<td>5</td>
<td>1</td>
<td>$24,197.69</td>
</tr>
<tr>
<td>Chemotherapy 846-848 (111)</td>
<td>2</td>
<td>1</td>
<td>$10,603.71</td>
</tr>
<tr>
<td>Overall (456)</td>
<td>19</td>
<td>9</td>
<td>$63,327.62</td>
</tr>
</tbody>
</table>

CAP=community-acquired pneumonia, COPD=chronic obstructive pulmonary disease

Table 9. Total Missed Reimbursement When Documentation and Coding for Malnutrition Are Absent (15)

<table>
<thead>
<tr>
<th>DRG Group</th>
<th>RDN Documentation of Malnutrition But No Secondary Diagnosis Code (n)</th>
<th>Secondary Diagnosis of Malnutrition Would Have Been Primary Driver of Reimbursement (n)</th>
<th>Total Missed Reimbursement</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD 190-192</td>
<td>5</td>
<td>1</td>
<td>$1,976.58</td>
</tr>
<tr>
<td>CAP 193-195</td>
<td>10</td>
<td>6</td>
<td>$26,128.92</td>
</tr>
<tr>
<td>Spinal Fusion 459-460</td>
<td>3</td>
<td>2</td>
<td>$48,395.38</td>
</tr>
<tr>
<td>Chemotherapy 846-848</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
<td>20</td>
<td>9</td>
<td>$76,500.88</td>
</tr>
</tbody>
</table>

CAP=community-acquired pneumonia, COPD=chronic obstructive pulmonary disease